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REVIEWS 

Differential-und integral-ungleichungen. BY W. WALTER. Springer, 

This book consists of a set of highly fruitful variations on a single theme. The 
theme is a familiar one in analysis: the estimation a priori of solutions of a 
nonlinear differential or integral equation in terms of solutions of a corre- 
sponding linear equation or linear inequality. Nowhere else, however, has this 
idea been carried out systematically, one might almost say relentlessly, for 
such a broad class of practically interesting problems. 

At the core of the work is a series of estimation theorems (‘ Abschatzungssatze ’) 
of remarkably consistent form. In  each case the solution u of a nonlinear 
problem Tu = 0 is sought; an approximate solution 2, is assumed known, and 
a class of error estimates Iu - v1 < p is derived. The functions p are determined 
only implicitly, as solutions of a ‘substitute problem’ Q p  = 0 or sometimes 
Q p  > 0. The (possibly inhomogeneous) linear operator Q is explicitly expressed 
in terms of two quantities: an upper bound S on the residual ITvI, and some 
sort of modulus of continuity for the ‘nonlinear part’ of T. 

The simplest such modulus of continuity would be a Lipschitz condition, but 
more general moduli are frequently used. Indeed, for maximum utility it is 
desirable to restrict Q as little as possible, since one then obtains the largest 
class of error functions p and therefore the closest estimates for u. To accomplish 
this, the author often hypothesizes only one-sided moduli of continuity or 
moduli applicable only to solutions. 

With just one exception, uniqueness theorems are derived throughout from 
error estimates, rather than directly. Thus they automatically carry with them 
theorems on continuous dependence. Existence theorems, on the other hand, 
are proved only for Volterra integral equations. 

Volterra equations in one independent variable, with their usual application 
to initial value problems for ordinary differential equations, form the subject 
of chapter I. The moduli of continuity here come from integral estimates, and 
the proofs of the Abschatzungssatze are based on Gronwall’s Lemma. Parti- 
cularly elegant results are obtained for Volterra operators with monotone 
kernels. 

Chapter 11 is entitled Ordinary Differential Equations and deals with estima- 
tion methods for initial value problems based on geometrical properties of the 
solution-field. The fundamental idea is simply that neighbouring solutions 
cannot coalesce. This idea is extended in a neat way to systems of differential 
equations. The notation of a K-norm is introduced to facilitate systematic 
treatment of one-sided moduli of continuity, which often yield exponentially 
decreasing error estimates. Applications worth special mention are a two-stage 
uniqueness proof due to Krasnoselski and Krein (141v) and a surprisingly close 
estimate for solutions of the Blasius equation (15x111). 

The third chapter treats Volterra equations in several variables. The results 
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are applied to hyperbolic partial differential equations of the for mu,, = f(x, y , u )  
and, more generally, uxy = f (x, y,u, ux, uv). The analogy with ordinary differential 
equations is pushed as far as possible, uzy merely taking the place of u’, but often 
extra monotonicity conditions must be imposed on f. Disappointingly, esti- 
mates from one-sided moduli are not included. 

A highlight of this chapter is the construction (211v), starting from charac- 
teristic ordinary differential equations with multiple solutions, of a hyperbolic 
initial-value problem without any solution at  all. Also of note is a new existence 
theorem (18v) for systems of Volterra equations in several dimensions, the 
proof of which is connected with the problem of uniqueness in fewer dimensions. 
Incidentally, this theorem seems to have an unnecessarily strong hypothesis : 
continuity in the integration-variable < is needed only in directions perpendicular 
to the hyperplane of integration. 

The fourth and last chapter, entitled Parabolic Equations, contains major 
applications of interest to the fluid dynamicist. The basic form of differential 
equation treated is u, = f(t,x,u,ux,uxx), where aflauxx > 0, with an initial 
condition and (perhaps) boundary conditions. The methods, based mostly on 
the local maximum principle, are direct extensions of those used in Chapter II. 
The strong maximum principle for uniformly parabolic equations (261v), the 
Rayleigh-Ritz estimation procedure ( ~ ~ v I I I ) ,  stability results of Phragmen- 
Lindelof type (28x11) all come to light as mere special cases of the systematically 
derived Abschatzungssatze. Another special case is a theorem of Nickel (26~1) 
with an elegant geometrical interpretation : the solution remains within the 
convex hull of the graph of the initial and boundary data. Systems of parabolic 
equations are also treated, and some new one-sided estimation theorems 
(32v11, x) are derived. 

Extensive sections in chapter IV are devoted to two specific applications : the 
heat equation (with variable coefficients) and the equations of boundary-layer 
theory. For the heat equation, an unusual example is given in which a physically 
obvious minimum-principle is mathematically false unless the additional 
condition of non-negative temperature is imposed. 

The treatment of stationary boundary-layer theory, though confined to the 
two-dimensional case, leaves little to be desired in elegance and economy. 
Uniqueness is established by a one-sided Lipschitz condition in the absence of 
backward flow, then backward flow is beautifully excluded through the use of 
an Abschatzungssatz one of whose hypotheses, an estimate from below by the 
Blasius solution, is not even valid in the situations one wishes to exclude ! 

The time-dependent boundary-layer problem is also discussed, as an example 
of a ‘generalized ’ parabolic equation with several ‘ time-like ’ variables (in this 
case two, the downstream coordinate and the physical time). To fit the problem 
into this mould, however, the continuity equation is dropped, so that the 
estimates obtained are probably over-generous, while uniqueness cannot be 
proved at  all. 

Conspicuously missing from the book, though intimately related to its subject, 
are Green’s functions, energy inequalities, and all but the most perfunctory 
discussion of elliptic equations. The author sticks to his self-imposed framework, 
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treating only problems involving some sort of initial condition. Thus the 
opportunity to present a systematic derivation of the weak and strong maxi- 
mum principles for elliptic equations is not grasped. 

Another unfortunate feature is the minimal role played by numerical methods. 
While the author does show (25x111) how partial difference equations can be 
reduced to systems of ordinary differential equations and so brought within 
the scope of chapter 11, he neglects almost completely the systematic employ- 
ment of difference equations to create approximate solutions v and error 
functions p in his estimation theorems. The one very tantalizing exception is 
the Blasius equation (15x111) mentioned above. 

Professor Walter writes with clarity and precision. He takes good care to 
introduce the principal ideas gradually, with many mutually reinforcing 
examples, and to develop them in harmony and balance. He succeeds in welding 
the known results on uniqueness and continuous dependence into a single 
structural unit, with a consistent notation throughout. Regrettably, however, 
an over-condensed, forbidding summary of this notation is placed at  the very 
beginning of the book, where it tends to frighten off the casual reader. 

H. C. KRANZER 


